GENERAL OVERVIEW
OF THE SYSTEM

The UNIX system has become quite popular since its inception in 1969, running on
machines of varying processing power from microprocessors to mainframes and
providing a common execution environment across them. The system is divided
into two parts. The first part consists of programs and services that have made the
UNIX system environment so popular; it is the part readily apparent to users,
including such programs as the shell, mail, text processing packages, and source
code control systems. The second part consists of the operating system that
supports these programs and services. This book gives a detailed description of the
operating system. It concentrates on a description of UNIX System V produced by
AT&T but considers interesting features provided by other versions too. It
examines the major data structures and algorithms used in the operating system
that ultimately provide users with the standard user interface.

This chapter provides an introduction to the UNIX system. It reviews its
history and outlines the overall system structure. The next chapter gives a nfore
detailed introduction to the operating system.

1.1' HISTORY

In 1965, Bell Telephone Laboratories joined an effort with the General Electric
Company and Project MAC of the Massachusetts Institute of Technology to
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develop a new operating system called Multics [Organick 72]1 The goals of the
Multics system were to provide simultaneous computer access to a large community
of users, to supply ample computa;i\on power and data storage, and to allow users to
share their data easily, if desired.  Many people who later took part in the early
development of the UNIX system participated in the Multics work at Bell
Laboratories. Althougha primitive version of the Multics system was running on a
GE 645 computer by 1969, it did not provide the general service computing for
which it was intended, nor was it clear when its development goals would be met.
Consequently, Bell Laboratories ended its participation in the project.

With the end of their work on the Multics project, members-of the Computing
Science Research Center at Bell Laboratories were left without a ‘“convenient
interactive computing service” [Ritchie 84al. _(I_n an attempt to improve their
programming environment, Ken Thompson, Dennis Ritchie, and others sketched a
paper design of a file system that later evolved into an early version of the UNIX
file system. {Thompson wrote programs that simulated the behavior of the proposéd
file system and of programs in a demand-paging environment, and E:c even encoded
a simple kernel for the GE 645 computer, At the same time, he wrote a game
program, “Space Travel,” in Fortran for a GECOS system (the Honeywell 635),
but the program was unsatisfactory because it was difficult to control the ‘“‘space
ship” and the program was expensive to run. Thompson later found a little-used
PDP-7 computer that provided good graphic display and cheap executing power.
Programming “Space Travel” for the PDP-7 enabled Thompson to learn about the
machine, but its environment for program development required cross-assembly of
the program on the GECOS machine and carrying paper tape for input to the
PDP-7. To create a better development environment, Thompson and Ritchie
implemented their system design on the PDP-7, including an early version of the
UNIX file system, the process subsystem, and a small set of utility programs.
Eventually, the new system no longer needed the GECOS system as a development
environment but could support itself. The new system was given the name UNIX,
a pun on the name Multics coined by another member of the Computing Science
Research Center, Brian Kernighan.

iAlthough this early version of the UNIX system held much promise, it could
nottealize its potential until it was used in a real project. Thus, while providing a
text procéssing system for the patent department at Bell Laboratories, the UNIX
system was moved to a PDP-11 in 1971. The system was characterized by its small
size: 16K bytes for the system, 8K bytes for user programs, a disk of 512K bytes,
and a limit of 64K bytes per file, After its early success, Thompson set out to
implement a Fortran compiler for the new system, but instead came up with the
language B, influenced by BCPL [Richards 69]. B was an interpretive language
with the performance drawbacks implied by such languages, so Ritchie developed it
into one he called C, allowing generation of machine code, declaration of data
types, and definition of data structures. In 1973, the operating system was
rewritten in C, an unheard of step at the time, but one that was to have tremendous
impact on its acceptance among outside users. The number of installations at Bell
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Laboratories grew to about 25, and a UNIX Systems Group was formed to provide
internal supportﬁ

(At this time, AT&T coyld not market computer products because of a 1956
Consent Decree it had signed with the Federal government, but it provided the
UNIX system to universities who requested it for educational purposes.) AT&T
neither advertised, marketed, nor supported the system, in adhgrence to the terms
of the Consent Decree.| Nevertheless, the system’s popularity steadily increased. In
1974, Thompson and Ritchic published a paper describing the UNIX system in the
Comriunications of the ACM [Thompson 74), giving further impetus to_its .
acceptance. By 1977, the number of UNIX system sites had grown to about 500,
of which 125 were in universities. UNIX systems became popular in the operating
telephone companies, providing a good environment for program development,
network transaction operations services, and real-time services (via MERT
[Lycklama 78al). Licenses of UNIX systems were provided to commereial
institutions as well as universities. In 1977, Interactive Systems Corporation
became the first Value Added Reseller (VAR)' of a UNIX system, enhancing it
for use in officc automation environments. 1977 also marked the year that the
UNIX system was first “ported” to a non-PDP machine (that is, made to run on
another machine with few or no changes), the Interdata 8/32. .

mth the growing popularity of microprocessors, other companies ported the
U system to new machines, but its simplicity and clarity tempted many
developers to enhance it in their own way, resulting in several variants of the basic
system. | @ the period from 1977 to 1982, Bell Laboratories combined several
AT&T)variants into a single system, known commercially as UNIX System 1.
Bell Laboratories later added several features to UNIX System 111, calling the new
product UNIX System V.2 and AT&T announced official support for System V in
January 1983. However, people at the University of California at Berkeley had
developed a variant to the UNIX system, the most recent version of which is called
4.3 BSD for VAX machines, ‘providing some new, interesting features. This book:
will concentrate on the description.of UNIX System V and will occasionally talk
about features provided in the BSD system. ,

'By the beginning of 1984, there were about 100,000 UNIX system installations
in the world, running on; machines with a wide range of computing power from
microp! to mainframes and on machines across different manufacturers’
product lines. | No other operating system can make that claim. Several reasons
have been suggested for the popularity and success of the UNIX system.

1. Value Added Rescllers add specific applications to a computer system to satisly a particular market.
They market the applications rather than the operating system upon which they run.

2. *What happened to System 1V? An internal version of the system evolved into System V.
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® The system is written in a high-level language, making it easy to read,
understand, change, and move to other machines. Ritchie estimates that the
first system in C was 20 to 40 percent larger and slower because it was not
written in assembly language, but the advantages of using a higher-level
language far outweigh the disadvantages (see page 1965 of [Ritchie 78b)).

® It has a simple user interface that has the power to provide the services that

users want.

e It provides primitives that permit complex programs to be built from simpler
programs.

e It uses a hierarchical file system that allows easy maintenance and efficient
implementation.

o It uses a consistent format for files, the byte stream, making application
programs easier to write.

e It provides a simple, consistent interface to peripheral devices.

e It is a multi-user, multiprocess system; each user can execute several processes
simultaneously.

e It hides the machine architecture from the user, making it easier to write
programs that run on different hardware implementations.

The philosophy of simplicity and consistency underscores the UNIX system and
accounts for many of the reasons cited above.

Although the operating system and many of the command programs are written
in C, UNIX systems support other languages, including Fortran, Basic, Pascal,
Ada, Cobol, Lisp, and Prolog. The UNIX system can support any language that
has a compiler or interpreter and a system interface that maps user requests for
operating system services to the standard set of requests used on UNIX systems.

1.2 SYSTEM STRUCTURE

LFigure 1.1 dcpicts the high-level architecture of the UNIX system. The hardware
at the center of the diagram provides the operating system with basic services that

will be described in Section 1.5. ( The operating system interacts directly’ with the
_hardware, providing common services to programs and insulating them from
hardware idiosyncrasies. Viewing the system as a set of layers, the operating

system is commonly called the system kernel, or just the kernel, emphasizing its

3. In some implementations of the UNIX system, the operating system interacts with a native operating
system that, in turn, interacts with the under\yihg hardware and provides riecessary services to the
system. Such configurations allow installation to run other operating systems and their applications
in paraliel to the UNIX system. The classic example of such a configuration is the MERT system
[Lycklama 78al. More recent configurations include implementations for IBM System/370
computers [Felton 84] and for UNIVAC 1100 Series computers [Bodenstab 84].
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Other application programs

Other application programs

Figure 1.1. Architecture of UNIX Systems

isolation from user programs. Because programs are independent of the underlying
hardware, it is easy to move them between UNIX systems running on different
hardware if the programs do not make assumptions about the underlying hardware. )
For instance, programs that assume the size of a machine word are more difficult to
move to other machines than programs that do not make this assumption.

Programs such as the shell and editors (ed and vi) shown in the outer layers
interact with the kernel by invoking a well defined set of system calls. The system
calls instruct the kernel to do various operations for the calling program and
exchange data between the kernel and the program. Several programs shown in the
figure are in standard system configurations and are known as commands, but
private. fiser programs may also exist in this layer as indicated by the program
whose name is a.out, the standard name for executable files produced by the C
compiler. Other application programs can build on top of lower-level programs,
hence the existence of the outermost layer in the ﬁgure'_._\_) For example, the standard
C compiler, cc, is in the outermost layer of the figure: it invokes a C preprocessor



6 GENERAL OVERVIEW OF THE SYSTEM

two-pass compiler, assembler, and loader (link-editor), all separate lower-level
programs. Although the figure depicts a two-level hierarchy of application
programs, users can extend the hierarchy to whatever levels are appropriate.
Indeed, the style of programming favored by the UNIX system encourages the
combination of existing programs to accomplish a task.

Many application subsystems and programs that provide a high-level view of the
system such as the shell, editors, SCCS (Source Code Control System), and
document preparation packages, have gradually become synonymous with the name
“UNIX system.” However, they all use lower-level services ultimately provided by
the kernel, and they avail themselves of these services via the set of system calls.
(There are about 64 system calls in System V, of which fewer than 32 are used
frequently. They have simple options that make them easy to use but provide the
user with a lot of power. i The set of system calls and the internal algorithms that
implement them form the body of the kernel, and the study of the UNIX operating
system presented in this book reduces to a detailed study and analysis of the system
calls and their interaction with one another. In short, the kernel provides the
services upon which_gll application programs in the UNIX system rely, and it
defines those services.' This book will frequently use the terms “UNIX system,”
“kernel,” or “system,” but the intent is to refer to the kernel of the UNIX
operating system and should be clear in context.

1.3 USER PERSPECTIVE

This section briefly reviews high-level features of the UNIX system such as the file
system, the processing environment, and building block primitives (for example,
pipes). Later chapters will explore kernel support of these features in detail.

1.3.1 The File System 'S
The UNIX file system is characterized by

¢ a hierarchical structure,

® consistent treatment of file data,

e the ability to create and delete files,

e dynamic growth of files,

e the protection of file data,

® the treatment of peripheral devices (such as terminals and tape units) as files.

The file system is organized as a tree with a single root node called root (written
“/"); every non-leaf node of the file system structure is a directory of files, and files
at the leaf nodes of the tree arc cither directories, regular files, or special device
* files. The name of a file is given by a path name that-describes how to locate the
file in the file system hierarchy. A path name is a sequence of component names
separated by slagsh characters; a component is a sequence of characters that
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fsl bin etc usr unix  dev

/N

mjbmaury sh date who passwd src  bin tty00 ttyOl

Figure 1.2. Sample File System Tree

designates a file name that is uniquely contained in the previous (directory)
component. A full path name starts with a slash character and specifies a file that
can be found by starting at the file system root and traversing the file tree,
following the branches that lead to successive component names of the path name.
Thus, the path names “/etc/passwd”, “/bin/who”, and */usr/src/cmd/who.c”
designate files in the tree shown in Figure 1.2, but “/bin/passwd” and
“/usr/src/date.c” do not. A path name does not have to start from root but can be
designated relative to the current directory of an executing process, by omitting the
initial slash in the path name. Thus, starting from directory */dev”, the path name
“tty01” designates the file whose full path name is “/dev/tty01”.

Programs in the UNIX system have no knowledge of the internal format in
which the kernel stores file data, treating the data as an unformatted stream of
bytes. Programs may interpret the byte stream as they wish, but the interpretation
has no bearing on how the operating system stores the data. Thus, the syntax of
accessing the data in a file is defined by the system and is identical for all
programs, but the semantics of the data are imposed by the program. For example,
the text formatting program troff expects to find “new-line” characters at the end
of each line of text, and the system accounting program acctcom expects to find
fixed length records. Both programs use the same system services to access the
data in the file as a byte stream, and internally, they parse the stream into a
suitable format. If either program discovers that the format is incorrect, it is
responsible for taking the appropriate action.

Directories are like regular files in this respect; the system treats the data in a
directory as a byte stream, but the data contains the names of the files in the
directory in a predictable format so that the operating system and programs such as



8 GENERAL OVERVIEW OF THE SYSTEM

Is (list the names and attributes of files) can discover the files in a directory.

Permission to access a file is controlled by access permissions associated with
the file. Access permissions can be set independently to control read, write, and
exccute permission for three classes of users: the file owner, a file group, and
everyone else. Users may create files if directory access permissions allow it. The
newly created files are leaf nodes of the file system directory structure.

To the user, the UNIX system treats devices as if they were files. Devices,
designated by special device files, occupy node positions in the file system directory
structure. Programs access devices with the same syntax they use when accessing
regular files; the semantics of reading and writing devices are to a large degree the
same as reading and writing regular files. Devices are protected in the same way
that regular files are protected: by proper setting of their (file) access permissions.
Because device names look like the names of regular files and because the same
operations work for devices and regular files, most programs do not have to know
internally the types of files they manipulate.

For example, consider the C program in Figure 1.3, which makes a new copy of
an existing file. Suppose the name of the executable version of the program is
copy. A user at a terminal invokes the program by typing

copy oldfile newfile

where oldfile is the name of the existing file and newfile is the name of the new file.
The system invokes main, supplying argc as the number of parameters in the list
argv, and initializing each member of the array argv to point to a user-supplied
parameter. In the example above, argc is 3, argvl0] points to the character string
copy (the program name is conventionally the Oth parameter), argv(1] points to the
character string oldfile, and argv(2] points to the character string mewfile. The
program then checks that it has been invoked with the proper number of
parameters. If so, it invokes the open system call “read-only” for the file oldfile,
and if the system call succeeds, invokes the creat system call to create newfile. The
permission modes on the newly created file will be 0666 (octal), allowing all users
access to the file for reading and writing. All system calls return —1 on failure; if
the open or creat calls fail, the program prints a message and calls the exit system
call with return status 1, terminating its execution and indicating that something
went wrong. o o ‘

The open and creat system calls return an integer called a file descriptor, which
the program uses for subsequent references to the files. The program then calls the
subroutine copy, which goes into a loop, invoking the read system call to read a
buffer’s worth of characters from the existing file, and invokihg the write system
call to write the data to the new file. The read system call returns the number of
bytes read, returning O when it reaches the end of file. The program finishes the
loop when it encounters the end of file, or when there is some error on the read
system call (it does not check for write errors). Then it returns from copy and
exits with return status 0, indicating that the program completed successfully.
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#include <fcntlh>
char buffer[2048];
int version = 1; /* Chapter 2 explains this */

main(argc, argv)
int arggc;
char *argv(];

int fdold, fdnew;
if (argc != 3)

printf("need 2 arguments for copy program\n”);
exit(1);
)
fdold = open(argvl1], O_RDONLY); /* open source file read only */
if (fdold == —1)
{
printf("cannot open file %s\n", argvl1]);
exit(1);
)
fdnew = creat(argvi2). 0666); /* create target file rw for all */
if (fdnew == —1)
{
printf("cannot create file %s\n", argvi2]);
exit(1);
)
copy(fdold, fdnew);
exit(0);
)

copy(old, new)
int old, new;
{

int count;

while ((count = read(old, buffer, sizeof (buffer))) > 0)
write(new, buffer, count);

Figure 1.3. Program to Copy a File

The program copies any files supplied to it as arguments, provided it has
permission to open the existing file and permission to create the new file. The file
can be a file of printable characters, such as the source code for the program, or it
can contain unprintable characters, even the program itself. Thus, the two
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invocations

COpy COpY.C NEWCOpY.C
COpY COpY NEWCOpY

both work. The old file can also be a directory. For instance,
copy dircontents

copies the contents of the current directory, denoted by the name “.”, to a regular
file, “dircontents™; the data in the new file is identical, byte for byte, to the contents
of the directory, but the file is a regular file. (The system call mknod creates a
new directory.) Finally, cither file can be a device special file. For example,

copy /dev/tty terminalread

reads the characters typed at the terminal (the special file Mevity is the user’s
terminal) and copies them to the file terminalread, terminating only when the user
types the character control-d. Similarly,

copy /dev/tty /dev/tty
reads characters typed at the terminal and copies them back.

1.3.2 Processing Eavironment

A program is an executable file, and a process is an instance of the program in
execution. Many processes can execute simultaneously on UNIX systems (this
feature is sometimes called multiprogramming or multitasking) with no logical limit
to their number, and many instances of a program (such as copy) can exist
simultaneously in the system. Various system calls allow processes to create new
processes, terminate processes, synchronize stages of process execution, and control
reaction to various events. Subject to their use of system calls, processes execute
independently of each other. _

For example, a process executing the program in Figure 1.4 executes the Jork
system call to create a new process. The new process, called the child process, gets
a 0 return value from fork and invokes exec/ to execute the program copy (the
program in Figure 1.3). The execl call overlays the address space of the child
process with the file “copy”, assumed to be in the current directory, and runs the
program with the user-supplied parameters. If the exec/ call succeeds, it never
returns because the process executes in a new address space, as will be seen in
Chapter 7. Meanwhile, the process that had invoked fork (the parent) receives a
non-0 return from the call, calls wait, suspending its execution until copy finishes,
prints the message “copy done,” and exits (every program exits at the end of its
main function, as arranged by standard C program libraries that are linked during
the compilation process). For example, if the name of the executable program is
run, and a user invokes the program by
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main(arge, argv)
int argc;
char *argvi];

/* assume 2 args: source file and target fils */
if (fork(Q == 0)
execl("copy”, "copy", argvl1], argv(2], 0);
wait((int *) 0);
| printf("copy done\n");

Figure 1.4. Program that Creates a New Process to Copy Files

run oldfile newfile

the process copies “oldfile” to “newfile” and prints out the message. Although this
program adds little to the “copy” program, it exhibits four major system calls used
for process control: fork, exec, wait, and, discreetly, exit.

Generally, the system calls allow users to write programs that do sophisticated
operations, and as a result, the kernel of the UNIX system does not contain many
functions that are part of the “kernel” in other systems. Such functions, including
compilers and editors, are user-level programs in the UNIX system. The prime
example of such a program is the shell, the command interpreter program that
users typically execute after logging into the system. (The shell interprets the first
word of a command line as a command name: for many commands, the shell forks
and the child process execs the command associated with the name, treating the
remaining words on the command line as parameters to the command.

The shell allows three types of commands. First, a command can be an
executable file that contains object code produced by compilation of source code (a
C program for example). Second, a command can be an exccutable file that
contains a sequence of shell command lines. Finally, a command can be an internal
shell command (instead of an executable file). The internal commands make the
shell a programming language in addition to a command interpreter and include
commands for looping (for-in-do-done and while-do-done), commands for
conditional execution (if-then-else-fi), a “case” statement command, a command to
change the current directory of a process (cd), and several others. The shell syntax
allows for pattern matching and parameter processing. Users execute commands
without having to know their types.

The shell searches for commands in a given sequence of directories, changeable
by user request per invocation of the shell. The shell usually executes a command
synchronously, waiting for the command to terminate before reading the next
command line. However, it also allows asynchronous execution, where it reads the
next command line and executes it without waiting for the prior command to

terminate. Commands executed asynchronously are said to execute in the
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background. For example, typing the command
who t

causes the system to execute the program stored in the file binfho.® which prints a
list of people who are currently logged in to the system. While who executes, the
shell waits for it to finish and then prompts the user for another command. By
typing

who &

the system executes the program who in the background, and the shell is ready to
accept another command immediately.

Every process executing in the UNIX system has an execution environment that
includes a current directory. The current directory of a process is the start
directory used for all path names that do not begin with the slash character. The
user may execute the shell command cd, change directory, to move around the file
system tree and change the current directory. The command line ’

cd /usr/src/uts

changes the shell’s current directory to the directory “/usr/src/uts”. The command
line

cd /..

changes the shell’s current directory to the directory that is’ two nodes “closer” to
the root node: the component “.” refers to the parent directory of the current
directory.

Because the shell is a user program and not part of the kernel, it is easy to
modify it and tailor it to a particular environment. For instance, users can use the
C shell to provide a history mechanism and avoid retyping recently used commands,
instead of the Bourne shell (named after its inventor, Steve Bourne), provided as
part of the standard System V release. Or some users may be granted use only of
a restricted shell, providing a scaled down version of the regular shell. The system
can execute the various shells simultaneously. Users have the capability to execute
many processes simultaneously, and processes can create other processes
dynamically and synchronize their execution, if desired. These features provide
users with a powerful execution environment. Although much of the power of the
shell derives from its capabilities as a programming language and from its
capabilities for pattern matching of arguments, this section concentrates on the
process environment provided by the system via the shell. Other important shell

4. The directory “/bin” contains many useful commands and is usually included in the sequence of
directories the shell searches.
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features are beyond the scope of this book (see [Bourne 78] for a detailed
description of the shell).

1.3.3 Building Block Primitives

As described earlier, the philosophy of the UNIX system is to provide operating
system primitives that enable users to write small, modular programs that can be
used as building blocks to build more complex programs. One such primitive
visible to shell users is the capability to redirect 1/0. Processes conventionally have
access to three files: they read from their standard input file, write to their
standard output file, and write error messages to their standard error file.
Processes executing at a terminal typically use the terminal for these three files, but
each may be “redirected” independently. For instance, the command line

Is
lists all files in the current directory on the standard output, but the command line
Is > output

redirects the standard output to the file called “output” in the current directory,
using the creat system call mentioned above. Similarly, the command line

mail mjb < letter

opens the file “letter” for its standard intput and mails its contents to the user
named “mjb.” Processes can redirect input and output simultaneously, as in

nroff =mm < docl > docl.out 2> errors

where the text formatter mroff’ reads the input file docl, redirects its standard
output to the file docl.out, and redirects error messages to the file errors (the
notation “2>" means to redirect the output for file descriptor 2, conventionally the
standard error). The programs Is, mail, and nroff do not know what file their
standard input, standard output, or standard error will be; the shell recognizes the
symbols “<”, “>”, and “2>" and sets up the standard input, standard output,
and standard error appropriately before executing the processes.

The second building block primitive is the pipe, a mechanism that allows a
stream of data to be passed between reader and writer processes. Processes can
redirect their standard output to & pipe to be read by other processes that have
redirected their standard input to come from the pipe. The data that the first
processes write into the pipe is the input for the second processes. The second
processes could also redirect their output, and so on, depending on programming
need. Again, the processes need not know what type of file their standard output is;
they work regardless of whether their standard output is a regular file, a pipe, or a
device. When using the smaller programs as building blocks for a larger, more
complex program, the programmer uses the pipe primitive and redirection of 1/0 to
integrate the piece parts. Indeed, the system tacitly encourages such programming
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style so that new programs can work with existing programs.
For example, the program grep searches a set of files (parameters to grep) for a
given pattern:

grep main a.c b.c c.c

searches the three files a.c, b.c, and c.c for lines containing the string “main” and
prints the lines that it finds onto standard output. Sample output may be:

a.c: main(argc, argv)
c.c: /* here is the main loop in the program */
¢.¢: main()

The program wc with the aption —1 counts the number of lings in the standard
input file. The command line

grep main a.c b.c c.c| we —I

counts the number of lines in the files that contain the string “main"; the output
from grep is “piped” directly into the we command. For the previous sample
output from grep, the output from the piped command is

3

The use of pipes frequently makes it unnecessary to create temporary files,

1.4 OPERATING SYSTEM SERVICES

Figure 1.1 depicts the kernel layer immediately below the layer of user application
programs. The kernel performs various primitive operations on behalf of user
processes to support the user interface described above. Among the services
provided by the kernel are

¢ Controlling the execution of processes by allowing their creation, termination or
suspension, and communication

® Scheduling processes fairly for execution on the CPU. Processes share the CPU
in a time-shared manner: the CPU® executes a process, the kernel suspends it
when its time quantum eclapses, and the kernel schedules another process to
execute. The kernel later reschedules the suspended process.

¢ Allocating main memory for an executing process. The kernel allows processes
to share portions of their address space under certain conditions, but protects
the private address space of a process from outside tampering. If the system
runs low on free memory, the kernel frees memory by writing a process

5. Chbapter 12 will consider multiprocessor systems; until then, assume a single processor model.



14 OPERATING SYSTEM SERVICES 15

temporarily to secondary memory, called a swap device. If the kernel writes
entire processes to a swap device, the implementation of the UNIX system is
called a swapping system; if it writes pages of memory to 2 swap device, it is
called a paging system.

¢ Allocating secondary memory for efficient storage and retrieval of user data.
This service constitutes the file system. The kernel allocates secondary storage
fot user files, reclaims unused storage, structures the file system in a well
understood manner, and protects user files from illegal access.

e Allowing processes controlled access to peripheral devices such as terminals,
tape drives, disk drives, and network devices.

The kernel provides its services transparently. For example, it recognizes that a
given file is a regular file or a device, but hides the distinction from user processes.
Similarly, it formats data in a file for internal storage, but hides the internal format
from user processes, returning an unformatted byte stream. Finally, it offers
necessary setvices so that user-level processes can support the services they must
provide, while omitting services that can be implemented at the user level. For
example, the kernel supports the services that the shell needs to act as a command
interpreter: It allows the shell to read terminal input, to spawn processes
dynamically, to synchronize process execution, to create pipes, and to redirect 1/O.
Users can construct private versions of the shell to tailor their environments to their
specifications without affecting other users. These programs use the same kernel
services as the standard shell.

1.8 ASSUMPTIONS ABOUT HARDWARE

The execution of user processes on UNIX systems is divided into two levels: user
and kernel. When a process executes a system call, the execution mode of the
process changes from user mode to kernel mode: the operating system executes
and attempts to service the user request, returning an error code if it fails. Even if
the user makes no explicit requests for operating system services, the operating
system still does bookkeeping operations that relate o the user process, handling
interrupts, scheduling processes, managing memory, and so on. Many machine
architectures (and their operating systems) support more levels than the two
outlined here, but the two modes, user and kernel, are sufficient for UNIX systems.
The differences between the two modes are

e Processes in user mode can access their own instructions and data but not kernel
instructions and data (or those of other processes). Processes in kernel mode,
however, can access kernel and user addresses. For example, the virtual address
space of a process may be divided between addresses that are accessible only in
kernel mode and addresses that are accessible in either mode.

e Some machine instructions are privileged and result in an error when executed
in user mode. For example, a machine may contain an instruction that
manipulates the processor status register; processes executing in user mode
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Figure 1.5. Multiple Processes and Modes of Execution

should not have this capability.

Put simply, the hardware views the world in terms of kernel mode and user mode
and does not distinguish among the many users executing programs in those modes.
The operating system keeps internal records to distinguish the many processes
executing on the system. Figure 1.5 shows the distinction: the kernel distinguishes
between processes A, B, C, and D on the horizontal axis, and the hardware
distinguishes the mode of execution on the vertical axis.

Although the system executes in one of two modes, the kernel runs on behalf of
a user process. The kernel is not a separate set of processes that run in parallel to
user processes, but it is part of-each user process. The ensuing text will frequently
refer to “the kernel” allocating resources or “the kernel” doing various operations,
but what is meant is that a process executing in kernel mode allocates the resources
or does the various operations. For example, the shell reads user terminal input via
a system call: The kernel, executing on behalf of the shell process, controls the
operation of the terminal and returns the typed characters to the shell. The sheli
then executes in user mode, interprets the character stream typed by the user, and
does the specified set of actions, which may require invocation of other system calls.

L5.1 Interrupts and Exceptions

The UNIX system aliows devices such as I/0 peripherals or the system clock to
interrupt the CPU asynchronously. On receipt of the interrupt, the kernel saves its
current context (a frozen image of what the process was doing), determines the
cause of the interrupt, and services the interrupt. After the kernel services the
interrupt, it restores its interrupted context and proceeds as if nothing had
happened. The hardware usually prioritizes devices according to the order that
interrupts should be handled: When the kernel services an interrupt, it blocks out
lower priority interrupts but services higher priority interrupts.

(An exception condition refers to unexpected events caused by a process, such as
addressing illegal memory, executing privileged instructions, dividing by zero, and
S0 onj They are distinct from interrupts, which are caused by events that are
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external to a process. Exceptions happen “in the middle” of the execution of an
instruction, and the system attempts to restart the instruction after handling the
exception; interrupts are considered to happen between the execution of two
instructions, and the system continues with the next instruction after servicing the
interrupt. The UNIX system uses one mechanism to handle interrupts and
exception conditions.

1.5.2 Processor Execution Levels

The kernel must sometimes prevent the occurrence of interrupts during critical
activity, which could result in corrupt data if interrupts were allowed. For instance,
the kernel may not want to receive a disk interrupt while manipulating linked lists,
because handling the interrupt could corrupt the pointers, as will be seen in the
next chapter. Computers typically have a set of privileged instructions that set the
processor execution level in the processor status word. Setting the processor
execution level to certain values masks off interrupts from that level and lower
levels, allowing only higher-level interrupts. Figure 1.6 shows a sample set of
execution levels. If the kernel masks out disk interrupts, all interrupts except for
clock interrupts and machine error interrupts are prevented. If it masks out
software interrupts, all other interrupts may occur.

Machine Errors

Clock Higher Priority

|

Disk

Network Devices

Terminals Lower Priority

Software Interrupts l

Figure 1.6. Typical Interrupt Levels

1.5.3 Memory Management

The kernel permanently resides in main memory as does the currently executing
process (or parts of it, at least). When compiling a program, the compiler
generates a set of addresses in the program that represent addresses of variables
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and data structures or the addresses of instructions such as functions. The compiler
generates the addresses for a virtual machine as if no other program will execute
simultaneously on the physical machine.

When the program is to run on the machine, the kernel allocates space in main
memory for it, but the virtual addresses generated by the compiler need not be
identical to the physical addresses that they occupy in the machine. The kernel
coordinates with the machine hardware to set up a virtual to physical address
translation that maps the compiler-generated addresses to the physical machine
addresses. The mapping depends on the capabilities of the machine hardware, and
the parts of UNIX systems that deal with them are therefore machine dependent.
For example, some machines have special hardware to support demand paging.
Chapters 6 and 9 will discuss issues of memory management and how they relate to
hardware in more detail.

1.6 SUMMARY

This chapter has described the overall structure of the UNIX system, the
‘relationship between processes running in user mode versus kernel mode, and the
assumptions the kernel makes about the hardware. Processes execute in user mode
‘or kernel mode, where they avail themselves of system services using a well-defined
set of system calls. The system design encourages programmers to. write small
programs that do only a few operations but do them well, and then to éombine the
programs using pipes and 1/0 redirection to do more sophisticated processing.

The system calls allow processes to do operations that are otherwise forbidden to
them. In addition to servicing system calls, the kernel does general bookkeeping for
the user community, controlling process scheduling, managing the storage and
protection of processes in main memory, fielding interrupts, managing files and
devices, and taking care of system error conditions. The UNIX system kernel
purposely omits many functions that are part of other operating systems, providing
a small set of system calls that allow processes to do necessary functions at user
level. The next chapter gives a more detailed introduction to the kernel, describing
its architecture and some basic concepts used in its implementation.




INTRODUCTION
TO THE KERNEL

The last chapter gave a high-level perspective of the UNIX system environment.
This chapter focuses on the kernel, providing an overview of its architecture and
outlining basic concepts and structures essential for understanding the rest of the
book.

2.F ARCHITECTURE OF THE UNIX OPERATING SYSTEM

It has been noted (see page 239 of [Christian 83]) that the UNIX system supports
the illusions that the file system has “places” and that processes have “life.” The
two entities, files and processes, are the two central concepts in the UNIX system
model. Figure 2.1 gives a block diagram of the kernel, showing various modules
and t‘heir relationships to each other. In particular, it shows the file subsystem on
the left and the process control subsystem on the right, the two major components
of the kernel. The diagram serves as a useful logical view of the kernel, although
in practice the kernel deviates from the model because some modules interact with
the internal operations of others. -

Figure-2.1_shows three levels: -user, kernel, and hardwaré. The system call and
library interface represent the border between user programs and the kernel
depicted in Figure 1.1. System calls look like ordinary function calls -in C
programs, and libraries map these function calls to the primitives needed to enter

. 19
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Figure 2.1. Block Diagram of the System Kernel

the operating system, as covered in more detail in Chapter 6. Assembly language
programs may invoke system calls directly without a system call library, however.
Programs frequently use other libraries such as the standard I/O library to provide
.a’ more sophisticated use of the system calls. The libraries are linked with the
programs at compile time and are thus part of the user program for purposes of
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this discussion. An example later on will illustrate these points. -

The figure partitions the set of system calls into those that interact with the file
subsystem and those :that interact with the process control subsystem. The file
subsystem manages files, allocating file space, administering free space, controlling
access to files, and retrieving data for users. Processes interact with the file
subsystem via a specific set of system calls, such as open (to open a file for reading
or writing), close, read, write, stat (query the attributes of a file), chown (change
the record of who owns the file), and chmod (change the access permissions of a
file). These and others will be examined in Chapter 5.

The file subsystem accesses file data using a buffering mechanism that regulates
data flow between the kernel- and secondary storage devices. The buffering
mechanism interacts with block 1/0 device drivers to initiate data transfer to and
from the kernel. Device drivers are the kernel modules that control the operation
of peripheral devices. Block I/0 devices are random access storage devices;
alternatively, their device drivers make them appear to be random access storage
devices to the rest of the system. For example, a tape driver may allow the kernel
to treat a tape unit as a random access storage device. The file subsystem also
interacts directly with “raw” I/O device drivers without the intervention of a
buffering mechanism. Raw devices, sometimes-called character devices, include all
devices that are not block devices.

The process control subsystem is responsible for process synchronization,
interprocess communication,, memory management, and process scheduling. The
file subsystem and the process control subsystem interact when loading a file into
memory for execution, as will be seen in Chapter 7. the process subsystem reads
executable files into memory before exccuting them.

Some of the system calls for controlling processes are fork (create a new
process), exec (overlay the image of a program onto the running process), exit
(finish executing a process), wait (synchronize process execution with the exit of a
previously forked process), brk (control the size of memory allocated to a process),
and signal (control process response to extraordinary events). Chapter 7 will
examine these system calls and others.

The memory management module controls the allocation of memory. If at any
time the system does not have enough physical memory for all processes, the kernel
moves them between main memory and secondary memory so that all processes get
a fair chance to execute. Chapter 9 will describe two policies for managing
memory: swapping and demand paging. The swapper process is sometimes called
the scheduler, becdu!le it “schedules” the allocation of memory for processes and
influences the operation of the CPU scheduler. However, this text will refer to it as
the swapper to avoid confusion with the CPU scheduler.

The scheduler module allocates the CPU to processes. It schedules them to run
in turn until they voluntarily relinquish the CPU while awaiting a resource or until
the kernel preempts them when their recent run time exceeds a time quantum. The
scheduler then chooses the highest priority eligible process to run; the original
process will run again when it is the highest priority eligible process available.



22 INTRODUCTION TO THE KERNEL

There are several forms of interprocess communicatioﬁ, ranging from asynchronous
signaling of events to synchronous transmission-of messages between processes.
Finally, the hardware control is responsible for handling interrupts and for
communicating with the machine. Devices such as disks or terminals may interrupt
the CPU while a process is executing. If so, the kernel may resume execution of
the interrupted process after servicing the interrupt: Inferrupts are not serviced by
special processes but by special functions in the kernel, called in the context of the

currently running process.

2.2 INTRODUCTION TO SYSTEM CONCEPTS

This section gives an overview of some major kernel data structures and describes
the function of modules shown in Figure 2.1 in more detail.

2.2.1 An Overview of the File Subsystem

The internal representation of a file is given by an inode, which contains a
description of the disk layout of the file data and other information such as the file
owner, access permissions, and access times. The term inode is a contraction of the
term index node and is commonly used in literature on the UNIX system. Every
file has one inode, but it may have several names, all of which map into the inode.
Each name is called a link. When a\process refers to a file by name, the kernel
parses the file name one component at a time, checks that the process has
permission to search the directories in the path, and eventually retrieves the inode
for the file. For example, if a process calls

open(““/fs2/mjb/rje/sourcefile”, 1);

the kernel retrieves the inode for “/fs2/mjb/rje/sourcefile”. When a process
creates a new file, the kernel assigns it an unused inode. Inodes are stored in the
file system, as will be seen shortly, but the kernel reads them into an in-core! inode
table when manipulating files.

The kernel contains two other data structures, the file table and the user file
descriptor table. The file table is a global kernel structure, but the user file
descriptor table is allocated per process. When a process opens or creats a file, the
kernel allocates an entry from each table, corresponding to the file’s inode. Entries
in the three structures — user file descriptor table, file table, and inode table —
maintain the state of the file and.the user’s access to it. The file table keeps track
of the byte offset in the file' where the-user’s next read or write will start, and the

1. The term core refers to primary memory of a machine, not to hardware technology.
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Figure 2.2. File Descriptors, File Table, and Inode Table

access rights allowed to the opening process. The user file descriptor table
identifies all open files for a process. Figure 2.2 shows the tables and their
relationship to each other. The kernel returns a file descriptor for the open and
creat system calls, which is an index into the user file descriptor table. When
executing read and write system calls, the kernel uses the file descriptor to access
the user file descriptor table, follows pointers to the file table and inode table
entries, and, from the inode, finds the data in the file. Chapters 4 and 5 describe
these data structures in great detail. For now, suffice it to say that use of three
tables allows various degrees of sharing access to a file.

The UNIX system keeps regular files and directories on block devices such as
tapes or disks. Because of the difference in access time between the two, few, if
any, UNIX system installations use tapes for their file systems. In coming years,
diskless work stations will be common, where files are located on a remote system
and accessed via a network (see Chapter 13). For simplicity, however, the ensuing
text assumes the use of disks. An installation may have sevgral physical disk units,
each containing one or more file systems. Partitioning a disk into several file
systems makes it easier for administrators to manage the data stored there. The
kernel deals on a logical level with file systems rather than with disks, treating each
one as a logical device identified by a logical device number. The conversion
between logical device (file system) addresses and physical device (disk) addresses
is done by the disk driver. This book will use the term device to mean a logical
device unless explicitly stated otherwise.

A file system consists of a sequence of logical blocks, each containing 512, 1024,
2048, or any convenient multiple of 512 bytes, depending on the system
implementation. The size of a logical block is homogeneous within a file system but
may vary between different file systems in a system configuration. Using large’
logical blocks increases the effective data transfer rate between disk and memory,



24 INTRODUCTION TO THE KERNEL

becausc the kernel can transfer more data per disk operation and therefore make
fewer time-consuming operations. For example, reading 1K bytes from a disk in
one read operation is faster than reading 512 bytes twice. However, if a logical
block is too large, effective storage capacity may drop, as will be shown in Chapter
5. For simplicity, this book will use the term “block” to mean a logical block, and
it will assume that a logical block contains 1K bytes of data ‘unless explicitly stated

otherwise.
bﬁ; Saper inode list data blocks

Figure 2.3. File System Layout

A file system has the following structure (Figure 2.3).

® The boot block occupies the beginning of a file system, typically the first sector,
and may contain the bootstrap code that is read into the machine to boot, or
initialize, the operating system. Although only one boot block is needed to boot
the system, every file system has a (possibly empty) boot block. _

® The super block describes the state of a file system — how large it is, how
many files it can store, where to find free space on the file system, and other
information.

® The inode list is a list of inodes that follows the super block in the file system.
Administrators specify the size of the inode list when configuring a file system.
The kernel references inodes by index into the inode list. One inode is the root
inode of the file system: it is the inode by which the directory structure of the
file system is accessible after execution of the mount system call (Section 5.14).

® The data blocks start at the end of the inode list and contain file data and
administrative data. An allocated data block can belong to one and only one
file in the file system.

2.2.2 Processes

This section examines the process subsystem more closely. It describes the
structure of a process and some process data structures used for memory
management. Then it gives a preliminary view of the process state diagram and
considers various issues involved in some state transitions.

A process is the execution of a program and consists of a pattern of bytes that
the CPU interprets as machine instructions (called “text™), data, and stack. Many
processes appear to execute simultaneously as the kernel schedules them for
execution, and several processes may be instances of one program. A process
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executes by following a strict sequence of instructions that is self-contained and
does not jump to that of another process; it reads and writes its data and stack
sections, but it cannot read or write the data and stack of other processes.
Processes communicate with other processes and with 'the rest of the world via
system calls.

In practical terms, a process on a, UNIX system is the entity that is created by
the fork system call. Every process except process 0 is created when another
process executes the fork system call. The process that invoked the fork system
call is the parent process, and the newly created process is the child process. Every
process has one parent process, but a process can have many child processes. The
kernel identifies each process by its process number, called the process ID (PID).
Process 0 is a special process that is created “by hand” when the system boots;
after forking a child process (process 1), process 0 becomes the swapper process.
Process 1, known as init, is the ancestor of every other process in the system and
enjoys a special relationship with them, as explained in Chapter 7.

A user compiles the source code of a program to create an executable file, which
consists of several parts:

e a set of “headers” that describe the attributes of the file,

e the program text,

e a machine language representation of data that has initial values when the
program starts execution, and an indication of how much space the kernel
should allocate for uninitialized data, called bss? (the kernel initializes it to 0 at
run time),

e other sections, such as symbol table information.

For the program in Figure 1.3, the text of the executable file is the generated code
for the functions main and copy, the initialized data is the variable version (put
into the program just so that it should have some initialized data), and the
uninitialized data is the array buffer. System V versions of the C compiler create a
separate text section by default but support an option that allows inclusion of
program instructions in the data section, used in older versions of the system.

The kernel loads an executable file into memory during an exec system call, and
the loaded process consists of at least three parts, called regions: text, data, and
the stack. The text and data regions correspond to the text and data-bss sections of
the executable file, but the stack region is automatically created and its size is
dynamically adjusted by the kernel at run time. The stack consists of logical stack
frames that are pushed when calling a function and popped when returning; a
special register called the stack pointer indicates the current stack depth. A stack

2. The name bss comes from an assembly pseudo-operator on the IBM 7090 machine, which stood for
“block started by symbol.”
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frame contains the parameters to a function, its local variables, and the data
necessary to recover the previous stack frame, including the value of the program
counter and stack pointer at the time of the function call. The program code
contains instruction sequences that manage stack growth, and the kernel allocates
space for the stack, as needed. In the program in Figure 1.3, parameters argc and
argv and variables fdold and fdnew in the function main appear on the stack when
main is called (once in every program, by convention), and parameters old and new
and the variable count in the function copy appear on the stack whenever copy is
called.

Because a process in the UNIX system can execute in two modes, kernel or
user, it uses a separate stack for each mode. The user stack contains the
arguments, local variables, and other data for functions executing in user mode.
The left-side of Figure 2.4 shows the user stack for a process when it makes the
write system call in the copy program. The process startup procedure (included in
a library) had called the function main with two parameters, pushing frame 1 onto
the user stack; frame 1 contains space for the two local variables of main. Main
then called copy with two parameters, old and new, and pushed frame 2 onto the
user stack; frame 2 contains space for the local variable count. Finally, the process
invoked the system call write by invoking the library function write. Fach system
call has an entry point in a system call library; the system call library is encoded in
assembly language and contains special trap instructions, which, when executed,
Ccause an “interrupt” that results in a hardware switch to kernel mode. A process
calls the library entry point for a particular system call just-as it calls any function,
creating a stack frame for the library function. When the process executes the
special instruction, it switches mode to the kernel, executes kernel code, and uses
the kernel stack.

The kernel stack contains the stack frames for functions executing in kernel
mode. The function and data entries on the kernel stack refer to functions and
data in the kernel, not the user program, but its construction is the same as that of
the user stack. The kernel stack of a process is null when the process executes in
user mode. The right side of Figure 2.4 depicts the kernel stack representation for
a process executing the write system call in the copy program. The names of the
algorithms are described during the detailed discussion of the write system call in
later chapters.

Every process has an entry in the kernel process table, and each process is
allocated a u area® that contains private data manipulated only by the kernel. The
process table contains (or points to) a per process region table, whose entries point
to entries in a region table. A region is a contiguous area of a process’s address

3. The u in u area stands for “user.” Another name for the u area is u block; this book will always
refer to it as the u area.
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space, such as text, data, and stack. Region table entries describe the attributes of
the region, such as whether it contains text or data, whether it is shared or private,
and where the “data” of the region is located in memory. The extra level of
indirection (from the per process region table to the region table) allows
independent processes to share regions. When a process invokes the exec system
call, the kernel allocates regions for its text, data, and stack after freeing the old
regions the process had been using. When a process invokes fork, the kernel
duplicates the address space of the old process, allowing processes to share regions
when possible and making a physical copy otherwise. When a process invokes exit,
the kernel frees the regions the process had used. Figure 2.5 shows the relevant
data structures of a running process: The process table points to a per process
region table with pointers to the region table entries for the text, data, and stack
regions of the process.

The process table entry and the u area contain control and status information
about the process. The u area is an extension of the process table entry, and
Chapter 6 will examine the distinction between the two tables. Fields in the
process table discussed in the following chapters are

e a state field,
o identifiers indicating the user who owns the process (user IDs, or UIDs),
® an event descriptor set when a process is suspended (in the sleep state).

The u area contains information describing the process that needs to be
accessible only when the process is executing. The important fields are
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e a pointer to the process table slot of the currently executing process,
parameters of the current system call, return values and error codes,
file descriptors for all open files,

internal I/0O parameters,

current directory and current root (see Chapter 5),

process and file size limits.

The kernel can directly access fields of the u area of the executing process but not
of the u area of other processes. Internally, the kernel references the structure
variable u to access the u area of the currently running process, and when another
process executes, the kernel rearranges its virtual address space so that the
structure u refers to the u area of the new process. The implementation gives the
kernel an easy way to identify the current process by following the pointer from the
u area to its process table entry.

2.2.2.1 Context of a process

The context of a process is its state, as defined by its text, the values of its global
user variables and data structures, the values of machine registers it uses, the
values stored in its process table slot and u area, and the contents of its user and
kernel stacks. The text of the operating system and its global data structures are
shared by all processes but do not constitute part of the context of a process.

When executing a process, the system is said to be executing in the context of
the process. When the kernel decides that it should execute another process, it does
a context switch, so that the system executes in the context of the other process.
The kernel allows a context switch only under specific conditions, as will be seen.
When doing a context switch, the kernel saves enough information so that it can
later switch back to the first process and resume its execution. Similarly, when
moving from user to kernel mode, the kernel saves enough information so that it
can later return to user mode and continue execution from where it left off.
Moving between user and kernel mode is a change in mode, not a context switch.
Recalling Figure 1.5, the kernel does a context switch when it changes context from
process A to process B; it changes execution mode from user to kernel or from
kernel to user, still executing in the context of one process, such as process A.

The kernel services interrupts in the context of the interrupted process even
though it may not have caused the interrupt. The interrupted process may have
been executing in user mode or in kernel mode. The kernel saves enough
information so that it can later resume execution of the interrupted process and
services the interrupt in kernel mode. The kernel does not spawn or schedule a
special process to handle interrupts.
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2.2.2.2 Process states

The lifetime of a process can be divided into a set of states, each with certain
characteristics that describe the process. Chapter 6 will describe all process states,
but it is essential to understand the following states now:

1. The process is currently executing in user mode.

2. The process is currently executing in kernel mode.

3. The process is not executing, but it is ready to run as soon as the scheduler
chooses it. Many processes may be in this state, and the scheduling
algorithm determines which one will execute next.

4. The process is sleeping. A process puts itself to sleep when it can no longer
continue executing, such as when it is waiting for 1/0 to complete.

Because a processor can execute only one process at a time, at most one process
may be in states 1 and 2. The two states correspond to the two modes of execution,
user and kernel.

2.2.2.3 State transitions

The process states described above give a static view of a process, but processes
move continuously between the states according to well-defined rules. A state
transition diagram is a directed graph whose nodes represent the states a process
can enter and whose edges represent the events that cause a process to move from
one state to another. State transitions are legal between two states if there exists
an edge from the first state to the second. Several transitions may emanate from a
state, but a process will follow one and only one transition depending on the system
event that occurs. Figure 2.6 shows the state transition diagram for the process
states defined above.

Several processes can execute simultaneously in a time-shared. manner, as stated
earlier, and they may all run simultaneously in kernel mode. If they were allowed
to run in kernel mode without constraint, they could corrupt global kernel data
structures. By prohibiting arbitrary context switches and controlling the occurrence
of interrupts, the kernel protects its consistency.

The kernel allows a context switch only when a process moves from the state
“kernel running” to the state “asleep in memory.” Processes running in kernel
mode cannot be preempted by other processes; therefore the kernel is sometimes
said to be non-preemptive, although the system does preempt processes that are in
user mode. The kernel maintains consistency of its data structures because it is
non-preemptive, thereby solving the mutual exclusion problem — making sure that
critical sections of code are executed by at most one process at a time.

For instance, consider the sample code in Figure 2.7 to put a data structure,
whose address is in the pointer bpl, onto a doubly linked list after the structure
whose address is in bp. If the system allowed a context switch while the kernel
executed the code fragment, the following situation could occur. Suppose the
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kernel executes the code until the comment and then does a context switch. The
doubly linked list is in an inconsistent state: the structure bp/ is half on and half
off the linked list. If a process were to follow the forward pointers, it would find
bpl on the linked list, but if it were to follow the back pointers, it would not find
bpl (Figure 2.8). If other processes were to manipulate the pointers on the linked
list before the original process ran again, the structure of the doubly linked list
could be permanently destroyed. The UNIX system prevents such situations by
disallowing context switches when a process executes in kernel mode. If a process
goes to sleep, thereby permitting a context switch, kernel algorithms are encoded to
make sure that system data structures are in a safe, consistent state.

A related problem that can cause inconsistency in kernel data is the handling of
interrupts, which can change kernel state information. For example, if the kernel
was executing the code in Figure 2.7 and received an interrupt when it reached the
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struct queue {

} *bp, *bpl;

bpl—>forp = bp—> forp;

bpl—>backp = bp;

bp—>forp = bpl;

/* consider possible context switch here */
bpl—>forp—>backp = bpl;

Figure 2.7. Sample Code Creating Doubly Linked List

bpl
b
-] P ——
Placing bpl on doubly linked list
—— - 2
bp bpl
- - e———

Figure 2.8. Incorrect Linked List because of Context Switch

comment, the interrupt handler could corrupt the links if it manipulates the
pointers, as illustrated earlier. To solve this problem, the system could prevent all
interrupts while executing in kernel mode, but that would delay servicing of the
interrupt, possibly hurting system throughput. Instead, the kernel raises the
processor execution level to prevent interrupts when entering critical regions of
code. A section of code is critical if execution of arbitrary interrupt handlers could
result in consistency problems. For example, if a disk interrupt handler
manipulates the buffer queues in the figure, the section of code where the kernel
manipulates the buffer queues is a critical region of code with respect to the disk
interrupt handler. Critical regions are small and infrequent so that system
thré’ughput is largely unaffected by their existence. Other operating systems solve
this problem by preventing all interrupts when executing in system states or by
using elaborate locking schemes to ensure consistency. Chapter 12 will return to
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this issue for multiprocessor systems, where the solution outlined here is insufficient.

To review, the kernel protects its consistency by allowing a context switch only
when a process puts itself to sleep and by preventing one process from changing the
state of another process. It also raises the processor execution level around critical
regions of code to prevent interrupts that could otherwise cause inconsistencies.
The process scheduler periodically preempts processes executing in user mode so
that processes cannot monopolize use of the CPU.

2.2.2.4 Sleep and wakeup

A process executing in kernel mode has great autonomy in deciding what it is going
to do in reaction to system events. Processes can communicate with each other and
“suggest” various alternatives, but they make the final decision by themselves. As
will be seen, there is a set of rules that processes obey when confronted with various
circumstances, but each process ultimately follows these rules under its own
initiative. For instance, when a process must temporarily suspend its execution
(“go to sleep™), it does so of its own free will. Consequently, an interrupt handlpr
cannot go to sleep, because if it could, the interrupted process would be put to sleep
by default.

Processes go to sleep because they are awaiting the occurrence of some event,
such as waiting for I/0 completion from a peripheral device, waiting for a process
to exit, waiting for system resources to become available, and so on. Processes are
said to sleep on an event, meaning that they are in the sleep state until the event
occurs, at which time they wake up and enter the state “ready to run.” Many
processes can simultaneously sleep on an event; when an event occurs, all processes
sleeping on the event wake up because the event condition is no longer true. When
a process wakes up, it follows the state transition from the *“sleep” state to the
“ready-to-run” state, where it is eligible for later scheduling; it does not execute
immediately. Sleeping processes do not consume CPU resources: The kernel does
not constantly check to see that a process is still sleeping but waits for the event to
occur and awakens the process then.

For example, a process executing in kernel mode must sometimes lock a data
structure in case it goes to sleep at a later stage; processes attempting to
manipulate the locked structure must check the lock and sleep if another process
owns the lock. The kernel implements such locks in the following manner:

while (condition is true)
sleep (event: the condition becomes false);
set condition true;

It unlocks the lock and awakens all processes asleep on the lock in the following
manner:
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set condition false;
wakeup (event: the condition is false);

Figure 2.9 depicts a scenario where three processes, A, B, and C, contend for a
locked buffer. The sleep condition is that the buffer is locked. The processes
execute one at a time, find the buffer locked, and sleep on the event that the buffer
becomes unlocked. Eventually, the buffer is unlocked, and all processes wake up
and enter the state “ready to run.” The kernel eventually chooses one process, say
B, to cxccute Process B executes the “while” loop, finds that the buffer is
unlocked, sets the buffer lock, and proceeds. If process B later goes to sleep again
before unlocking the buffer (waiting for completion of an I/O operation, for
example), the kernel can schedule other processes to run. If it chooses process A,
process A executes the “while” loop, finds that the buffer is locked, and goes to
sleep again; process C may do the same thing. Eventually, process B awakens and
unlocks the buffer, allowing either process A or C to gain access to the buffer.
Thus, the “while-sleep” loop insures that at most one process can gain access to a
resource.

Chapter 6 will present the algorithms for sleep and wakeup in greater detail. In
the meantime, they should be considered “atomic™ A process enters the sleep state
instantaneously and stays there until it wakes up. After it goes to sleep, the kernel
schedules another process to run ar.d switches context to it.

2.3 KERNEL DATA STRUCTURES

Most kernel data structures occupy fixed-size tables rather than dynamically
allocated space. The advantage of this approach is that the kernel code is simple,
but it limits the number of entries for a data structure to the number that was
originally configured when generating the system: If, during operation of the
system, the kernel should run out of entries for a data structure, it cannot allocate
space for new entries dynamically but must report an error to the requesting user.
If, on the other hand, the kernel is configured so that it it is unlikely to run out of
table space, the extra table space may be wasted because it cannot be used for
other purposes. Nevertheless, the simplicity of the kernel algorithms has generally
been considered more important than the need to squeeze out every last byte of
main memory. Algorithms typically use simple loops to find free table entries, a
method that is easier to understand and sometimes more efficient than more
complicated allocation schemes.

2.4 SYSTEM ADMINISTRATION

Administrative processes are loosely classified as those processes that do various
functions for the general welfare of the user community. Such functions include
disk formatting, creation of new file systems, repair of damaged file systems, kernel
debugging, and others. Conceptually, there is no difference between administrative
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Figure 2.9. Multiple Processes Sleeping on a Lock
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processes and user processes: They use the same set of system calls available to the
general community. They are distinguished from general user processes only in the
rights and privileges they are allowed. For example, file permission modes may
allow administrative processes to manipulate files otherwise off-limits to general
users. Internally. the kernel distinguishes a special user called the superuser,
endowing it with special privileges, as will be seen. A user may become a superuser
by going through a login-password sequence or by executing special programs.
Other uses of superuser privileges will be studied in later chapters. In short, the
kernel does not recognize a separate class of administrative processes.

2.5 SUMMARY AND PREVIEW

This chapter has described the architecture of the kernel; its two major components
are the file subsystem and the process subsystem. The file subsystem controls the
storage and retrieval of data in user files. Files are organized into file systems,
which are treated as logical devices; a physical device such as a disk can contain
several logical devices (file systems). Each file system has a super block that
describes the structure and contents of the file system, and each file in a file system
is described by an inode that gives the attributes of the file. System calls that
manipulate files do so via inodes.

Processes exist in various states and move between them according to well-
defined transition rules. In particular, processes executing in kernel mode can
suspend their execution and enter the sleep state, but no process can put another
process to sleep. The kernel is non-preemptive, meaning that a process executing in
kernel mode will continue to execute until it enters the sleep state or until it returns
to execute in user mode. The kernel maintains the consistency of its data
structures by enforcing the policy of non-preemption and by blocking interrupts
when executing critical regions of code.

The remainder of this text describes the subsystems shown in Figure 2.1 and
their interactions in detail, starting with the file subsystem and continuing with the
process subsystem. The next chapten covers the buffer cache and describes buffer
allocation algorithms, used in the algorithms presented in Chapters 4, 5, and 7.
Chapter 4 examines internal algorithms of the file system, including the
manipulation of inodes, the structure of files, and the conversion of path names to
inodes. Chapter 5 explains the system calls that use the algorithms in Chapter 4 to
access the file system, such as open, close, read, and write. Chapter 6 deals with

_the basic ideas of the context of a process and\‘its address space, and Chapter 7

covers system calls that deal with process management and use the algorithms in
Chapter 6. Chapter 8 examines process scheduling, and Chapter 9 discusses
memory management algorithms. Chapter 10 covers device drivers, postponed to
this point so that the relationship between the terminal driver and process
management can be explained. Chapter 11 presents several forms of interprocess
communication. Finally, the last two chapters cover advanced topics, including
multiprocessor systems and distributed systems.
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2.6 EXERCISES

1. Consider the following sequence of commands:

grep main a.c b.c c.c > grepout &
we —| < grepout &
rm grepout &

The ampersand (*&”) at the end of each command line informs the shell to run the
command in the background, and it can execute each command line in parallel. Why
is this not equivalent to the following command line?

grep main a.c b.c c.c|we =l

2. Consider the sample kernel code in Figure 2.7. Suppose a context switch happens
when the code reaches the comment, and suppose another process removes-a buffer
from the linked list by executing the following code:

remove(qp)
struct queuc *gp;
{

qp— > forp—> backp = qp—> backp;
qp—> backp—> forp = qp—> forp;
qp—> forp = qp—>backp = NULL;

Consider three cases:
— The process removes the structure bp! from the linked list.
— The process removes the structure that currently follows bp! on the linked list.
— The process removes the structure that originally followed bpl before bp was half
placed on the linked list.
What is the status of the linked list after the original process completes executing the
code after the comment?
3. What should happen. if the kernel attempts to awaken all processes sleeping on an
event, but no processes are asleep on the cvent at the time of the wakeup?



THE BUFFER
CACHE

As mentioned in the previous chapter, the kernel maintains files on mass storage
devices such as disks, and it allows processes to store new information or to recall
previously stored information.\When a process wants to access data from a file, the
kernel brings the data into main memory where the process can examine it, alter it,
and request that the data be saved in the file system again. For example, recall the
copy program in Figure 1.3: The kernel reads the data from the first file into
memory, and then writes the data into the second file. Just as it must bring file
data into memory, the kernel must also bring auxiliary data into memory to
manipulate it. For instance, the super block of a file system describes the free
space available on the file system, among other things. The kernel reads the super
block into memory to access its data and writes it back to the file system when it
wishes to save its data Similarly, the inode describes the layout of a file. The
kernel reads an inode into memory when it wants to access data in a file and writes
the inode back to the file system when it wants to update the file layout. It
manipulates this auxiliary data without the explicit knowledge or request of running
processes. ,

The kernel could read and write directly to and from the disk for all file system
accesses, but system response time and throughput would be poor because of the
slow disk transfer rate. The kernel therefore attempts to minimize the frequency of
disk access by keeping a pool of internal data buffers, called the buffer cache,!

38
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which contains the data in recently used disk blocks.

Figure 2.1 showed the position of the buffer cache module in the kernel
architecture between the file subsystem and (block) device drivers. When reading
data from the disk, the kernel attempts to read from the buffer cache. If the data
is already in the cache, the kernel does not have to read from the disk. If the data
is not in the cache, the kernel reads the data from the disk and caches it, using an
algorithm that tries to save as much good data in the cache as possible. Similarly,
data being written to disk is cached so that it will be there if the kernel later tries
to read it. The kernel also attempts to minimize the frequency of disk write
operations by determining whether the data must really be stored on disk or
whether it is transient data that will soon be overwritten. Higher-level kernel
algorithms instruct the buffer cache module to pre-cache data or to delay-write
data to maximize the caching effect. This chapter describes the algorithms the
kernel uses to manipulate buffers in the buffer cache.

3.1 BUFFER HEADERS

During system initialization, the kernel allocates space for a number of buffers,
configurable according to memory size and system performance constraints. A
buffer consists of two parts: a memory array that contains data from the disk and
a buffer header that identifies the buffer. Because there is a one to one mapping of
buffer headers to data arrays, the ensuing text will frequently refer to both parts as
a “buffer,” and the context should make clear which part is being discussed.

The data in a buffer corresponds to the data in a logical disk block on a file
system, and the kernel identifies the buffer contents by examining identifier fields in
the buffer header. The buffer is the in-memory copy of the disk block; the contents
of the disk block map into the buffer, but the mapping is temporary until the kernel
decides to map another disk block into the buffer. A disk block can never map into
more than one buffer at a time. If two buffers were to contain data for one disk
block, the kernel would not know which buffer contained the current data and could
write incorrect data back to disk. For example, suppose a disk block maps into two
buffers, A and B. If the kernel writes data first into buffer A and then into buffer
B, the disk block should contain the contents of buffer B if all write operations
completely fill the buffer. However, if the kernel reverses the order when it copies
the buffers to disk, the disk block will contain incorrect data.

The buffer header (Figure 3.1) contains a device number field and a block
number field that specify the file system and block number of the data on disk and
uniquely identify the buffer. The device number is the logical file system number

1. The buffer cache is a software structure that should not be confused with hardware caches that speed
memory references.
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ptr to previous buf
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on free list

Figure 3.1. Buffer Header

(see Section 2.2.1), not a physical device (disk) unit number. The buffer header
also contains a pointer to a data array for the buffer, whose size must be at least as
big as the size of a disk block, and a status field that summarizes the current status
of the buffer. The status of a buffer is a combination of the following conditions:

e The buffer is currently locked (the terms “locked” and “busy” will be used
interchangeably, as will “free” and “unlocked”),

e The buffer contains valid data,

¢ The kernel must write the buffer contents to disk before reassigning the buffer;
this condition is known as *“‘delayed-write,”

¢ The kernel is currently reading or writing the contents of the buffer to disk,

e A process is currently waiting for the buffer to become free.

The buffer header also contains two sets of pointers, used by the buffer allocation
algorithms to maintain the overall structure of the buffer pool, as explained in the
next section.

3.2 STRUCTURE OF THE BUFFER POOL

The kernel caches data in the buffer pool according to a least recently used
algorithm: after it allocates a buffer to a disk block, it cannot use the buffer for



2 STRUCTURE OF THE BUFFER POOL 41

forward ptﬁ
free list | = S L L -
-

head buf 1 buf 2 'buf n

back ptrs
before
after
forward ptrs
free list = [ puf2 | > o

head - Creernes -
L back pu-‘s_/)

Figure 3.2. Free List of Buffers

another block until all other buffers have been used more recently. The kernel
maintains a free list of buffers that preserves the least recently used order. The
free list is a doubly linked circular list of buffers with a dummy buffer header that
marks its beginning and,end (Figure 3.2). Every buffer is put on the free list when
the system is booted. The kernel takes a buffer from the head of the free list when
it wants any free buffer, but it can take a buffer from the middle of the free list if
it identifies a particular block in the buffer pool. In both cases, it removes the
buffer from the free list. When the kernel returns a buffer to the buffer pool, it
usually attaches the buffer to the tail of the free list, occasionally to the head of the
free list (for error cases), but never to the middle. As the kernel removes buffers
from the free list, a buffer with valid data moves closer and closer to head of the
free list (Figure 3.2). Hence, the buffers that are closer to the head of the free list
have not been used as recently as those that are further from the head of the free
list.

When the kernel accesses a disk block, it searches for a buffer with the
appropriate device-block number combination. Rather than search the entire buffer
pool, it organizes the buffers into separate queues, hashed as a function of the
device and block number. The kernel links the buffers on a hash queue into a
circular, doubly linked list, similar to the structure of the free list. The number of
buffers on a hash queue varies during the lifetime of the system, as will be seen.
The kernel must use a hashing function that distributes the buffers uniformly across
the set of hash queues, yet the hash function must be simple so that performance
does not suffer. System administrators configure the number of hash queues when
generating the operating system.
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Figure 3.3. Buffers on the Hash Queues

Figure 3.3 shows buffers on their hash queues: the headers of the hash queues
are on the left side of the figure, and the squares on each row are buffers on a hash
queue. Thus, squares marked 28, 4, and 64 represent buffers on the hash queue for
“blkno 0 mod 4” (block number 0 modulo 4). The dotted lines between the buffers
represent the forward and back pointers for the hash queue; for simplicity, later
figures in this chapter will not show these pointers, but their existence is implicit.
Similarly, the figure identifies blocks only by their block number, and it uses a hash
function dependent only on a block number; however, implementations use the
device number, too.

Each buffer always exists on a hash queue, but there is no significance to its
position on the queue. As stated above, no two buffers may simultaneously contain
the contents of the same disk block; therefore, every disk block in the buffer pool
exists on one and only one hash queue and only once on that queue. However, a
buffer may be on the free list as well if its status is free. Because a buffer may be
simultaneously on a hash queue and on the free list, the kernel has two ways to find
it: It searches the hash queue if it is looking for a particular buffer, and it removes
a buffer from the free list if it is looking for any free buffer. The next section will
show how the kernel finds particular disk blocks in the buffer cache, and how it

“manipulates buffers on the hash queues and on the free list. To summarize, a
buffer is always on a hash queue, but it may or may not be on the free list.

3.3 SCENARIOS FOR RETRIEVAL OF A BUFFER

As seen in Figure 2.1, high-level kernel algorithms in the file subsystem invoke the
algorithms for managing the buffer cache. The high-level algorithms determine the



33 SCENARIOS FOR RETRIEVAL OF A BUFFER 43

logical device number and block number that they wish to access when they
attempt to retrieve a block. For example, if a process wants to read data from a
file, the kernel determines which file system contains the file and which block in the
file system contains the data, as will be seen in Chapter 4. When about to read
data from a particular disk block, the kernel checks whether the block is in the
buffer pool and, if it is not there, assigns it a free buffer. When about to write data
to a particular disk block, the kernel checks whether the block is in the buffer pool,
and if not, assigns a free buffer for that block. The algorithms for reading and
writing disk blocks use the algorithm getblk (Figure 3.4) to allocate buffers from
the pool.

This section describes five typical scenarios the kernel may follow in getblk to
allocate a buffer for a disk block.

1. The kernel finds the block on its hash queue, and its buffer is free.

2. The kernel cannot find the block on the hash queue, so it allocates a buffer
from the free list.

3. The kernel cannot find the block on the hash queue and, in attempting to
allocate a buffer from the free list (as in scenario 2), finds a buffer on the
free list that has been marked “delayed write.” The kernel must write the
“delayed write” buffer to disk and allocate another buffer.

4. The kernel cannot find the block on the hash queue, and the free list of
buffers is empty.

5. The kernel finds the block on the hash queue, but its buffer is currently busy.

Let us now discuss each scenario in greater detail.

When searching for a block in the buffer pool by its device-block number
combination, the kernel finds the hash queue that should contain the block. It
searches the hash queue, following the linked list of buffers until (in the first
scenario) it finds the buffer whose device and block number match those for which
it is searching. The kernel checks that the buffer is free and, if so, marks the
buffer “busy” so that other processes? cannot access it. The kernel then removes
the buffer frofh the free list, because a buffer cannot be both busy and on the free
list. If other processes attempt to access the block while the buffer is busy, they
sleep until the buffer is released, as will be seen. Figure 3.5 depicts the first
scenario, where the kernel searches for block 4 on the hash queue marked “blkno 0
mod 4.” Finding the buffer, the kernel removes it from the free list, leaving blocks
5 and 28 adjacent on the free list.

2. Recall from the last chapter that all kernel operations are done in the context of a process that is
executing in kernel mode. Thus, the term “other processes™ means that they are also executing in
kernel mode. This term will be used when describing the interaction of several processes executing in
kernel mode; if there is no interprocess interaction, the term “kernel” will be used. ‘
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algorithm getblk
input: file system number
block number
output: locked buffer that can now be used for block

{

while (buffer not found)
if (block in hash queue)
{
if (buffer busy) /* scenario 5 */
{

sleep (event buffer becomes free);
continue; -/* back to while loop */
mark buffer bu’"§'§: ’ /* scenario 1 */
remove buff€r from free list;
return buffer;

else /* block not on hash queue */
if (there are no buffers on free list) /* scenario 4 */

sleep (event any buffer becomes free);
continue; /* back to while loop */

remove buffer from free list;

if {buffer marked for delayed write) {  /* scenario 3 */
asynchronous write buffer to disk;
continue; /* back to while loop */

/* scenario 2 —— found a free buffer */
remove buffer from old hash queue;

put buffer onto new hash queue;

return buffer;

Figure 3.4. Algorithm for Buffer Allocation
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Figure 3.5. Scenario 1 in Finding a Buffer: Buffer on Hash Queue
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algorithm brelse
input: locked buffer
output: none

wakeup all procs: event, waiting for any buffer to become free;
wakeup all procs: event, waiting for this buffer to become free;
raise processor execution level to block interrupts;
if (buffer contents valid and buffer not old)
enqueue buffer at end of free list
else
enqueue buffer at beginning of free list
lower processor execution level to allow interrupts;
unlock (buffer);

Figure 3.6. Algorithm for Releasing a Buffer

Before continuing to the other scenarios, let us consider what happens to a
buffer after it is allocaied. The kernel may read data from the disk to the buffer
and manipulate it or write data to the buffer and possibly to the disk. The kernel
leaves the buffer marked busy; no other process can access it and change its
contents while it is busy, thus preserving the integrity of the data in the buffer.
When the kernel finishes using the buffer, it releases the buffer according to
algorithm brelse (Figure 3.6). It wakes up processes that had fallen asleep because
the buffer was busy and processes that had fallen asleep because no buffers
remained on the free list. In both cases, release of a buffer means that the buffer is
available for use by the sleeping processes, although the first process that gets the
buffer locks it and prevents the other processes from getting it (recall Section
2.2.2.4). The kernel places the buffer at the end of the free list, unless an 1/0
error occurred or unless it specifically marked the buffer “old,” as will be seen later
in this chapter; in the latter cases, it places the buffer at the beginning of the free
list. The buffer is now free for another process to claim it.

Just as the kernel invokes algorithm brelse when a process has no more need for
a buffer, it also invokes the algorithm when handling a disk interrupt to release
buffers used for asynchronous I/0 to and from the disk, as will be seen in Section
3.4. The kernel raises the processor execution level to prevent disk interrupts while
manipulating the free list, thereby preventing corruption of the buffer pointers that
could result from a nested call to brelse. Similar bad effects could happen if an
interrupt handler invoked brelse while a process was executing gerblk, so the kernel
raises the processor execution level at strategic places in getblk, too. The exercises
explore these cases in greater detail.

In the second scenario in algorithm getblk, the kernel searches the hash queue
that should contain the block but fails to find it there. Since the block cannot be
on another hash queue because it cannot “hash” elsewhere, it is not in the buffer
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cache. So the kernel removes the first buffer from the free list instead: that buffer
had been allocated to another disk block and is also on a hash queue. If the buffer
has not been marked for a delayed write (as will be described later), the kernel
marks the buffer busy, removes it from the hash queue where it currently resides,
reassigns the buffer header’s device and block number to that of the disk block for
which the process is searching, and places the buffer on the correct hash queue.
The kernel uses the buffer but has no record that the buffer formerly contained
data for another disk block. A process searching for the old disk block will not find
it in the pool and will have to allocate a new buffer for it from the free list, exactly
as outlined here. When the kernel finishes with the buffer, it releases it as
described above. In Figure 3.7, for example, the kernel searches for block 18 but
does not find it on the hash queue marked “blkno 2 mod 4. It therefore removes
the first buffer from the free list (block 3). assigns it to block 18, and places it on
the appropriate hash queue.

In the third scenario in aigorithm gerb/k, the kernel also has to allocate a buffer
from the free list. However, it discovers that the buffer it removes from the free
list has been marked for “delayed write,” so it must write “e contents of the buffer
to disk before using the buffer. The kernel starts an asynchronous write to disk and
tries to allocate another buffer from the free list. When the asynchronous write
completes, the kernel releases the buffer and places it at the head of the free list.
The buffer had started at the eud of the free list and had traveled to the head of
the free list. If, after the asynchronous write, the kernel were to place the buffer at
the end of the free list, the buffer would get a free trip through the free list,
working against the least recently used algorithm. For example, in Figure 3.8, the
kernel cannot find block 18, but when it attempts to allocate the first two buffers
(one at a time) on the free list, it finds them marked for delayed write. The kernel
removes them from the free list, starts write operations to disk for the blocks, and
allocates the third buffer on the free list, block 4. 1t reassigns the buffer’s device
and block number fields appropriately and places the buffer, now marked block 18,
on its new hash queue.

In the fourth scenario (Figure 3.9), the kernel, acting for process A, cannot find
the disk block on its hash queue, so it attempts to allocate a new buffer from the
free list, as in the second scenario. However, no buffers are available on the free
list, so process A goes to sleep until another process executes algorithm brelse,
freeing a buffer. When the kernel schedules process A, it must search the hash
queue again for the block. It cannot allocate a buffer immediately from the free
list, because it is possible that several processes were waiting for a free buffer and
that one of them allocated a newly freed buffer for the target block sought by
process A. Thus, searching for the block again insures that only one buffer
contains the disk block. Figure 3.10 depicts the contention between two processes
for a free buffer.

The final scenario (Figure 3.11) is complicated, because it involves complex
relationships between several processes. Suppose the kernel, acting for process A,
searches for a disk block and allocates a buffer but goes to sleep before freeing the
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Figure 3.8. Third Scenario for Buffer Allocation
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Figure 3.9. Fourth Scenario for Allocating Buffer

buffer. For example, if process A attempts to read a disk block and aliocates a
buffer as in_scenario 2, then it will sleep while it waits for the I/O transmission
from disk, to complete. While process A sleeps, suppose the kernel schedules a
second process, B, which tries to access the disk block whose buffer was just locked
by process A. Process B (going through scenario 5) will find the locked block on
the hash queue. Since it is illegal to use a locked buffer and it is illegal to allocate
a second buffer for a disk block, process B marks the buffer “in demand” and then
sleeps and waits for process A to release the buffer.

Process A will eventually release the buffer and notice that the buffer is in
demand. It awakens all processes sleeping on the event “the buffer becomes free,”
including process B. When the kernel again schedules process B, process B must
verify that the buffer is free. Another process, C, may have been waiting for the
same buffer, and the kernel may have scheduled C to run before process B; process
C may have gone to sleep leaving the buffer locked. Hence, process B must check
that the block is indeed free.

Process B must also verify that the buffer contains the disk block that it
originally requested, because process C may have allocated the buffer to another
block, as in scenario 2. When process B executes, it may find that it had been
waiting for the wrong buffer, so it must search for the block again: If it were to
allocate a buffer automatically from the free list, it would miss the possibility that
another process just allocated a buffer for the block.



